характерный признак старения - vertaling naar frans
Diclib.com
Woordenboek ChatGPT
Voer een woord of zin in in een taal naar keuze 👆
Taal:

Vertaling en analyse van woorden door kunstmatige intelligentie ChatGPT

Op deze pagina kunt u een gedetailleerde analyse krijgen van een woord of zin, geproduceerd met behulp van de beste kunstmatige intelligentietechnologie tot nu toe:

  • hoe het woord wordt gebruikt
  • gebruiksfrequentie
  • het wordt vaker gebruikt in mondelinge of schriftelijke toespraken
  • opties voor woordvertaling
  • Gebruiksvoorbeelden (meerdere zinnen met vertaling)
  • etymologie

характерный признак старения - vertaling naar frans

ПРИЗНАК СХОДИМОСТИ ЧИСЛОВЫХ РЯДОВ
Признак сходимости Д'Аламбера; Признак сходимости Д’Аламбера; Признак сходимости д’Аламбера; Признак Даламбера; Признак Д'Аламбера; Признак Д’Аламбера

характерный признак старения      
mode de vieillissement particulier
свойство         
ПРЕОБЛАДАЮЩИЙ ПРИЗНАК, ХАРАКТЕРИЗУЮЩИЙ СУЩЕСТВО, ВЕЩЬ, ЯВЛЕНИЕ И Т.Д. И ОТЛИЧАЮЩИЙ ОДНО СУЩЕСТВО ОТ ДРУГОГО, ОДНУ ВЕЩЬ ОТ ДРУГОЙ
Свойства
с.
propriété , nature ; naturel m ; caractéristiques ; trait ( черта )
главное ее свойство - терпение - sa vertu première est la patience
свойства         
ПРЕОБЛАДАЮЩИЙ ПРИЗНАК, ХАРАКТЕРИЗУЮЩИЙ СУЩЕСТВО, ВЕЩЬ, ЯВЛЕНИЕ И Т.Д. И ОТЛИЧАЮЩИЙ ОДНО СУЩЕСТВО ОТ ДРУГОГО, ОДНУ ВЕЩЬ ОТ ДРУГОЙ
Свойства
propriétés

Definitie

ДИФФЕРЕНЦИАЛЬНЫЙ ПРИЗНАК
элемент или свойство языковой единицы (напр., фонемы), на котором основывается ее противопоставление другой единице того же уровня.

Wikipedia

Признак д’Аламбера

При́знак д’Аламбе́ра (или Признак Даламбера) — признак сходимости числовых рядов, установлен Жаном д’Аламбером в 1768 г.

Если для числового ряда

n = 0 a n {\displaystyle \sum _{n=0}^{\infty }a_{n}}

существует такое число q {\displaystyle q} , 0 < q < 1 {\displaystyle 0<q<1} , что, начиная с некоторого номера, выполняется неравенство

| a n + 1 a n | q , {\displaystyle \left|{\frac {a_{n+1}}{a_{n}}}\right|\leqslant q,}

то данный ряд абсолютно сходится; если же, начиная с некоторого номера

| a n + 1 a n | 1 {\displaystyle \left|{\frac {a_{n+1}}{a_{n}}}\right|\geqslant 1} ,

то ряд расходится.

Если же, начиная с некоторого номера, | a n + 1 a n | < 1 {\displaystyle \left|{\frac {a_{n+1}}{a_{n}}}\right|<1} , при этом не существует такого q {\displaystyle q} , 0 < q < 1 {\displaystyle 0<q<1} , что | a n + 1 a n | q {\displaystyle \left|{\frac {a_{n+1}}{a_{n}}}\right|\leqslant q} для всех n {\displaystyle n} , начиная с некоторого номера, то в этом случае ряд может как сходиться, так и расходиться.